Fractions


1. What is a Fraction?

A fraction represents a part of a whole.

It is written in the form:

NumeratorDenominator\frac{\text{Numerator}}{\text{Denominator}}
  • Numerator: The top number — tells how many parts you have.

  • Denominator: The bottom number — tells how many equal parts the whole is divided into.

Example:

34 means 3 parts out of 4.\frac{3}{4} \text{ means 3 parts out of 4.}

2. Types of Fractions

a) Proper Fractions

  • Numerator < Denominator

  • Value is less than 1

Example:

35,79\frac{3}{5}, \frac{7}{9}

b) Improper Fractions

  • Numerator ≥ Denominator

  • Value is equal to or more than 1

Example:

54,88,96\frac{5}{4}, \frac{8}{8}, \frac{9}{6}

c) Mixed Fractions

  • A combination of a whole number and a proper fraction

Example:

213 (means 2+13)2 \frac{1}{3} \text{ (means } 2 + \frac{1}{3})

3. Equivalent Fractions

Fractions that look different but have the same value.

To get an equivalent fraction, multiply or divide both the numerator and the denominator by the same number.

Examples:

12=24=36=48\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} 23=46=69\frac{2}{3} = \frac{4}{6} = \frac{6}{9}

4. Comparison of Fractions

To compare fractions:

  • Same denominator: compare numerators directly

  • Different denominators: find common denominators or convert to decimals

Example 1 (same denominators):

37<57\frac{3}{7} < \frac{5}{7}

Example 2 (different denominators):

Compare 23\frac{2}{3} and 34\frac{3}{4}
→ Common denominator = 12

23=812,34=91223<34\frac{2}{3} = \frac{8}{12}, \quad \frac{3}{4} = \frac{9}{12} \Rightarrow \frac{2}{3} < \frac{3}{4}

5. Operations on Fractions

a) Addition

Same denominators:

25+15=35\frac{2}{5} + \frac{1}{5} = \frac{3}{5}

Different denominators:

14+13=312+412=712\frac{1}{4} + \frac{1}{3} = \frac{3}{12} + \frac{4}{12} = \frac{7}{12}

b) Subtraction

Example:

5613=5626=36=12\frac{5}{6} - \frac{1}{3} = \frac{5}{6} - \frac{2}{6} = \frac{3}{6} = \frac{1}{2}

c) Multiplication

Multiply numerators and denominators:

23×34=612=12\frac{2}{3} \times \frac{3}{4} = \frac{6}{12} = \frac{1}{2}

d) Division

Keep the first fraction, flip the second, then multiply:

34÷25=34×52=158=178\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \times \frac{5}{2} = \frac{15}{8} = 1 \frac{7}{8}

Bonus: Converting Between Improper and Mixed Fractions

Improper to Mixed:

74=134\frac{7}{4} = 1 \frac{3}{4}

Mixed to Improper:

213=732 \frac{1}{3} = \frac{7}{3}

Summary:

Concept Example
Proper Fraction 35\frac{3}{5}
Improper Fraction 96\frac{9}{6}
Mixed Fraction 2132 \frac{1}{3}
Equivalent 12=24\frac{1}{2} = \frac{2}{4}
Addition 14+12=34\frac{1}{4} + \frac{1}{2} = \frac{3}{4}
Multiplication 23×35=615\frac{2}{3} \times \frac{3}{5} = \frac{6}{15}


Post a Comment

Previous Post Next Post