Decimals and Percentages


🔹 1. Decimals

What is a Decimal?

A decimal is a number that has a whole number part and a fraction part separated by a decimal point.

✏️ Example:

7.5 means 7 wholes and 5 tenths (510)7.5 \text{ means 7 wholes and 5 tenths } \left(\frac{5}{10}\right) 3.25=3+210+51003.25 = 3 + \frac{2}{10} + \frac{5}{100}

🔹 2. Types of Decimals

a) Terminating Decimals

  • Decimals that come to an end.

Example:

0.5,3.75,2.1250.5, \quad 3.75, \quad 2.125

b) Recurring (Repeating) Decimals

  • Decimals that have one or more digits repeating forever.

Example:

0.333=0.3,1.666=1.60.333\ldots = 0.\overline{3}, \quad 1.666\ldots = 1.\overline{6}

c) Non-Terminating, Non-Repeating Decimals

  • Decimals that never end and don’t repeat.

  • These are irrational numbers.

Example:

Ï€=3.14159265or2=1.4142135\pi = 3.14159265\ldots \quad \text{or} \quad \sqrt{2} = 1.4142135\ldots

🔹 3. Operations on Decimals

a) Addition

Line up the decimal points and add.

Example:

2.35+1.7=4.052.35 + 1.7 = 4.05

b) Subtraction

Align decimal points and subtract.

Example:

5.82.45=3.355.8 - 2.45 = 3.35

c) Multiplication

Multiply as whole numbers, then place the decimal point in the answer.

Example:

2.3×1.2=2.762.3 \times 1.2 = 2.76

d) Division

Move the decimal point to make the divisor a whole number, then divide normally.

Example:

4.8÷0.2=244.8 \div 0.2 = 24

🔹 4. Percentages

What is a Percentage?

A percentage is a number expressed as a fraction of 100.

The symbol % means "per hundred".

✏️ Examples:

50%=50100=0.525%=25100=0.2550\% = \frac{50}{100} = 0.5 \quad 25\% = \frac{25}{100} = 0.25

Converting Between Forms

Form Example
Fraction to % 34=0.75=75%\frac{3}{4} = 0.75 = 75\%
Decimal to % 0.6=60%0.6 = 60\%
% to Decimal 25%=0.2525\% = 0.25

Finding a Percentage of a Number

Example:
What is 20% of 150?

=20100×150=30= \frac{20}{100} \times 150 = 30

Increase or Decrease by a Percentage

Increase:

New Value=Original+(Percentage×Original)\text{New Value} = \text{Original} + (\text{Percentage} \times \text{Original})

Decrease:

New Value=Original(Percentage×Original)\text{New Value} = \text{Original} - (\text{Percentage} \times \text{Original})

Example:
Increase 200 by 10%

=200+(0.10×200)=220= 200 + (0.10 \times 200) = 220

✅ Summary Table:

Concept Example
Decimal (Terminating) 2.75
Decimal (Recurring) 0.666... = 0.\overline{6}
Add Decimals 1.25 + 2.4 = 3.65
Multiply Decimals 0.5 × 0.2 = 0.10
Convert % to Decimal 40% = 0.4
Find the % of a Number 10% of 80 = 8


Post a Comment

Previous Post Next Post